Kwai Logo
Kwai User Avatar
TESSERACT, A QUINTA DIMENSÃO Em teoria matemática, o hipercubo é um objeto geométrico de dimensões superiores, que pode ser entendido como uma generalização do conceito de cubo para dimensões maiores. Um hipercubo de quatro dimensões é um objeto que pode ser representado por um conjunto de pontos no espaço de quatro dimensões. Ele é chamado de "tesserato" em referência ao conceito de "tessera" , pois pode ser dividido em quadrados menores. O tesserato no filme "Interestela
50
2
Download
Loading
kwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwaikwai kwaikwaikwaikwaikwaikwaikwaikwaikwaikwai